Short-time Existence of the Ricci Flow on Noncompact Riemannian Manifolds
نویسنده
چکیده
In this paper, using the local Ricci flow, we prove the short-time existence of the Ricci flow on noncompact manifolds, whose Ricci curvature has global lower bound and sectional curvature has only local average integral bound. The short-time existence of the Ricci flow on noncompact manifolds was studied by Wan-Xiong Shi in 1990s, who required a point-wise bound of curvature tensors. As a corollary of our main theorem, we get the short-time existence part of Shi’s theorem in this more general context. We get C0 curvature estimates for the local Ricci flow by using so called “local local” curvature estimates and Moser iteration. And in an appendix we give the first detailed proof of the short-time existence of the local Ricci flow.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملOn the asymptotic scalar curvature ratio of complete Type I-like ancient solutions to the Ricci flow on noncompact 3-manifolds
Complete noncompact Riemannian manifolds with nonnegative sectional curvature arise naturally in the Ricci flow when one takes the limits of dilations about a singularity of a solution of the Ricci flow on a compact 3-manifold [ H-95a]. To analyze the singularities in the Ricci flow one needs to understand these manifolds in depth. There are three invariants, asymptotic scalar curvature ratio, ...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کامل2 6 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing - Long Chen and Xi - Ping Zhu
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
متن کاملar X iv : m at h / 05 05 44 7 v 3 [ m at h . D G ] 2 7 M ay 2 00 5 Uniqueness of the Ricci Flow on Complete Noncompact Manifolds Bing
The Ricci flow is an evolution system on metrics. For a given metric as initial data, its local existence and uniqueness on compact manifolds was first established by Hamilton [8]. Later on, De Turck [4] gave a simplified proof. In the later of 80's, Shi [20] generalized the local existence result to complete noncompact manifolds. However, the uniqueness of the solutions to the Ricci flow on co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009